

Regendatenkatalog

Generelle Entwässerungsplanung (GEP)

Inhaltsverzeichnis

1 Einleitung	Seite 01
2 Datengrundlage	Seite 02
3 Bestimmung von neuen IDF-Kurven	Seite 04
4 Integrale (bivariate) Regenanalyse	Seite 10
5 Regendatenkatalog	Seite 14
6 Anwendung Regendatenkatalog in GEP Überarbeitung	Seite 19
7 Fazit	Seite 21

Zu diesem Dokument gehört das Dokument «Regendatenkatalog Anhang».

1 Einleitung

1.1 Allgemeines

Regendaten werden in der Generellen Entwässerungsplanung (GEP) und bei der Erschliessungsplanung für die Simulation und Dimensionierung von Kanalnetzen und insbesondere Sonderbauwerken verwendet. Um die in diesem Bereich tätigen Ingenieurbüros zu unterstützen und die Berechnungsergebnisse besser vergleichen zu können, steht mit dem Regendatenkatalog eine einheitliche Datengrundlage für die Regendaten im Kanton Thurgau zur Verfügung.

Für jedes Einzugsgebiet einer Abwasserreinigungsanlage (ARA-Einzugsgebiet) wurde ein Regendatenkatalog definiert. Daneben wurden Intensität-Dauer-Häufigkeit (IDF¹)-Kurven erstellt. Der Regendatenkatalog umfasst eine gewisse Anzahl «reale» Einzelregenereignisse, welche sowohl bezüglich ihrer Wiederkehrperiode (Jährlichkeit) als auch ihres Verlaufs (inkl. Vor- und Nachregen), ihrer maximalen Intensität und ihres totalen Volumens für die Fragestellungen einer GEP-Überarbeitung geeignet.

Die Vorteile eines Regendatenkatalogs pro ARA-Einzugsgebiet sind einerseits die einfache und schnelle Handhabung der Daten durch die beschränkte Anzahl von Ereignissen (ca. 10) sowie andererseits der einfache und einheitliche Vergleich und die daraus folgende Interpretation der Resultate. Weiter kann der Regendatenkatalog als Grundlage für Langzeitsimulationen und für eine Analyse der Versagenswahrscheinlichkeit von Abwasseranlagen (Definition von Schutzzielen) dienen.

1.2 Ziele

Aus den historischen Regenmessdaten von SMA²-Messstationen für alle ARA-Einzugsgebiete im Kanton Thurgau wurde ein repräsentativer Regendatenkatalog von Einzelereignissen und neue IDF-Kurven erstellt. Damit konnten die relevanten Fragen im Entwässerungskonzept der GEP-Überarbeitung beantwortet und die Grundlagen für die Entwässerungsplanung aktualisiert werden.

1.3 Grundlagen

- Wegleitung GEP Generelle Entwässerungsplanung (GEP), Amt für Umwelt (AfU), Kanton TG, 2013.
- Fukutome S. und Schindler A., «MeteoSwiss extreme value analyses: User manual and documentation», Technical Report MeteoSwiss No. 255, 2015.
- Rüdisüli M., Multivariate Analyse von Regendaten mittels Copulas, Diplomarbeit im Weiterbildungslehrgang (WBL) «Angewandte Statistik», ETH Zürich, 2017.
- Nelsen R. B., An introduction to copulas. Springer Science & Business Media, 2007.
- Salvadori G., De Michele C., Kottegoda N. T. und Rosso R., Extremes in nature: an approach using copulas, volume 56. Springer Science & Business Media, 2007.
- Gräler B., Petroselli A., Grimaldi S., De Baets B. und Verhoest N. (2016). An update on multivariate return periods in hydrology. Proceedings of the International Association of Hydrological Sciences, 373, 175–178.
- Brunner M. I., Seibert J. und Favre A. C. (2016). Bivariate return periods and their importance for flood peak and volume estimation. Wiley Interdisciplinary Reviews: Water, 3(6), 819–833.
- Coles S. et al. An introduction to statistical modeling of extreme values. Vol. 208. London: Springer, 2001.
- Diplomarbeit «Auswertung historischer Regendaten bezüglich der Extremereignisse Kanton Thurgau», Kappeler S. und Sorgenfrei A., Berner Fachhochschule, 2001.
- Consuegra D., «La question des débits de dimensionnement», 2009.

¹ Intensity-Duration-Frequency

² SwissMetNet

2 Datengrundlage

2.1 Umfang und Messstationen

Zur Bestimmung des Regendatenkatalogs für jedes ARA-Einzugsgebiet im Kanton Thurgau wurden die historischen Regendaten der SMA-Stationen Güttingen (TG), Tänikon-Aadorf (TG), St. Gallen (SG) und Schaffhausen (SH) herangezogen.

Die Regendaten der vier SMA-Messstationen wurden mit einem konstanten Aufzeichnungsintervall von 10 min aufgezeichnet und umfassen die folgenden Zeiträume:

■ Güttingen	TG	01.01.1981-31.12.2016	36 Jahre
■ Tänikon-Aadorf	TG	01.01.1981-31.12.2016	36 Jahre
■ St. Gallen	SG	01.01.1982-31.12.2016	35 Jahre
Schaffhausen	SH	01.01.1982-31.12.2016	35 Jahre

Jahresniederschlagsummen und jährliche Maxima dieser Regendaten sind im separaten Anhang, Abschnitt 1, ersichtlich.

Lokale Regenschreiber (z. B. auf ARA), die oftmals eine zu wenig lange bzw. zu wenig hochaufgelöste Datengrundlage aufweisen, wurden explizit nicht berücksichtigt.

2.2 Datenaufbereitung/-manipulation

Für die anschliessende Analyse wurden die Rohdaten folgendermassen bearbeitet/bereinigt:

- Es wurden nur vollständige Jahre (von Januar bis Dezember) verwendet.
- Fehlende Werte wurden mittels linearer Interpolation eingesetzt.
- Potentielle Ausreisser (z. B. Jahresmaxima) wurden anhand von Zeitungsartikeln, Sturmarchiven etc. plausibilisiert. Es mussten keine Ausreisser eliminiert werden.

2.3 Einzelregenereignisse

Für die Bestimmung von Einzelregenereignissen aus dem ganzen Regendatensatz wurden die folgenden Kriterien angewandt:

Minimale Trockenzeit zwischen zwei unabhängigen Ereignissen³:
2 Stunden

Minimale «Totale Dauer» eines Ereignisses:30 Minuten

■ Minimale «Maximale Intensität» eines Ereignisses: 5 mm in 10 Minuten

Minimales «Totales Volumen» eines Ereignisses⁴:

Die gemäss diesen Kriterien durchgeführte Analyse resultiert in der folgenden Anzahl unabhängiger Einzelregenereignisse:

■ Güttingen 105

■ Tänikon 119

■ St. Gallen 137

■ Schaffhausen 90

Eine Darstellung dieser selektierten Einzelregenereignisse ist in Abbildung 1 für Güttingen dargestellt. Die analogen Darstellungen für alle vier Messstationen sind im separaten Anhang, Abschnitt 3, zu finden.

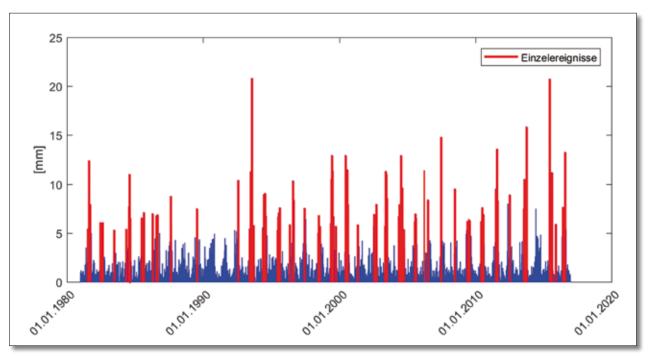


Abbildung 1: Gesamte historische Regenmessreihe (1981-2016) mit selektierten Einzelregenereignissen (rot) für Güttingen.

³ Die minimale Trockenzeit basiert rein auf der maximal anzunehmenden Fliesszeit im Kanalisationsnetz. Initiale Muldenverluste, Benetzungsverluste und Sättigungsprozesse auf durchlässigen Flächen werden, ungleich der gängigen Praxis in der Hydrologie und Hydrometrie, nicht berücksichtigt.

⁴ Dieses Kriterium wurde bereits in der Diplomarbeit von 2001 verwendet.

3 Bestimmung der neuen IDF-Kurven

3.1 Anpassung Extremwertverteilung

Zur Bestimmung der Intensität-Dauer-Häufigkeit-(IDF 5)-Kurven wurde die Block Maxima Methode der Extremwertstatistik gemäss MeteoSchweiz (Fukutome und Schindler, 2015) angewandt. Dazu wurden die jeweiligen Jahresmaxima jeder Dauerstufe von 10 Minuten bis 5 Stunden (300 Minuten) bestimmt und eine Generalized-Extreme-Value-(GEV)-Verteilung mittels Maximum Likelihood Schätzung angepasst. Falls der Shape-Parameter ξ der GEV kleiner gleich Null war, wurde stattdessen eine Gumbel-Verteilung ($\xi=0$) mittels Maximum Likelihood Schätzung angepasst. Die Darstellung der angepassten GEV- bzw. Gumbel-Verteilungen an die Jahresmaxima jeder Dauerstufe sind im separaten Anhang, Abschnitt 2, für alle Messstationen als Histogramm mit Dichtefunktion bzw. als QQ-Plot zu sehen. In allen Fällen konnten die Verteilungen gut an die Daten angepasst werden.

3.2 Trendanalyse

Die Extremwertstatistik der MeteoSchweiz zur Bestimmung der IDF-Kurven basiert auf stationären Zeitreihen. Um eine mögliche Instationarität, z. B. einen Trend infolge des Klimawandels, festzustellen, wurden die Jahresmaxima jeder Dauerstufe mittels des nicht-parametrischen Mann-Kendall-Tendenztests auf einen vorhandenen (linearen) Trend untersucht. Das Ergebnis dieser Trendanalyse ist in Abbildung 2 für Güttingen dargestellt. Analoge Darstellungen für die anderen Messstellen finden sich im separaten Anhang, Abschnitt 4. Abgesehen von den Jahresmaxima der Dauerstufe D = 10 Minuten (Güttingen), welche bei einem Signifikanzniveau von 5 % einen Trend aufweisen (P = 0.01) sind sonst keine signifikanten Trends zu erkennen.

Trotz des oben beschriebenen Trends in Güttingen wird im Folgenden eine stationäre Betrachtung der Dauerstufe D=10 Minuten gemacht, da eine statistisch korrekte Beschreibung von Jährlichkeiten in nicht-stationären Zeitreihen im Rahmen dieser Arbeit nicht möglich ist. Hinsichtlich von Dimensionierungsaufgaben im Bereich von Dauerstufen $D \le 20$ Minuten (z. B. Auslegung von Rohrkaliber in Anfangshaltungen) sollte dieser Trend jedoch fallweise mit einem zusätzlichen Sicherheitsfaktor berücksichtigt werden.

⁵ Intensity-Duration-Frequency

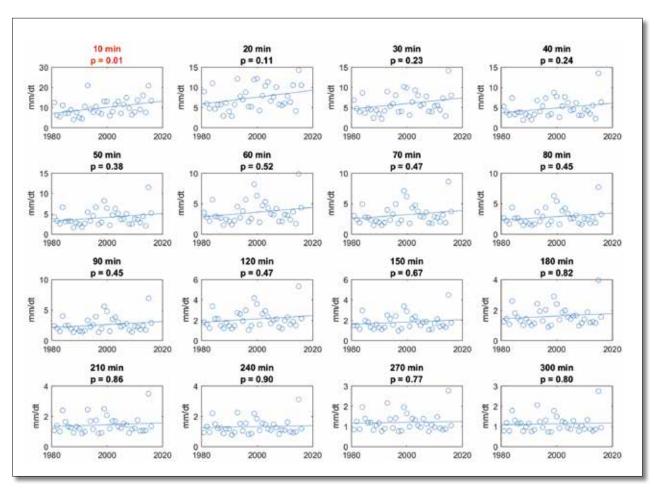


Abbildung 2: Trendanalyse der Jahresmaxima mittels Mann-Kendall-Trendtest für jede Dauerstufe der Messstation Güttingen. Signifikate p-Werte (=Trend ist vorhanden) sind rot im Titel markiert.

3.3 IDF-Kurven (inkl. Konfidenzintervalle)

Mit den angepassten GEV- bzw. Gumbel-Verteilungen können für jede Dauerstufe und jede korrespondierende Regenintensität die Jährlichkeit bestimmt werden. Die Jährlichkeit z einer Variablen X (z. B. «Regenintensität der Dauerstufe D=30 min») ist dabei eindeutig definiert als

$$z = t_{\mu} / (1 - F_{x}(x))$$
 (1)

mit als der durchschnittlichen Zeit zwischen zwei Ereignissen (z. B. $t_{\mu}=1$ für jährliche Ereignisse \rightarrow Jahresmaxima) und F_x (x_p) als der kumulierten Verteilfunktion («Unterschreitungswahrscheinlichkeit») der Variable X für den Wert x (z. B. Wahrscheinlichkeit, dass die Regenintensität der Dauerstufe D = 30 min kleiner oder gleich «x» mm ist).

In den Abbildungen 3 bis 6 sind die IDF-Kurven inklusive der Jahresmaxima für jede Dauerstufe mit den entsprechenden Jährlichkeiten 2, 5, 10 und 20 Jahre dargestellt.

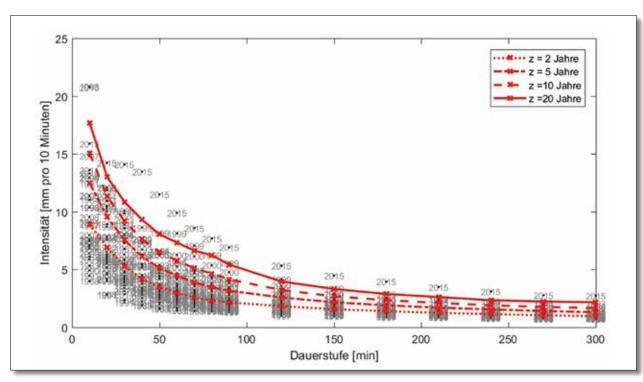


Abbildung 3: Neue IDF-Kurven mit Jahresmaxima für Güttingen

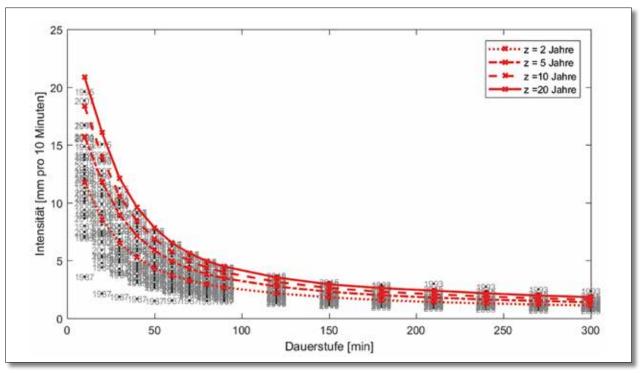


Abbildung 4: Neue IDF-Kurven mit Jahresmaxima für Tänikon

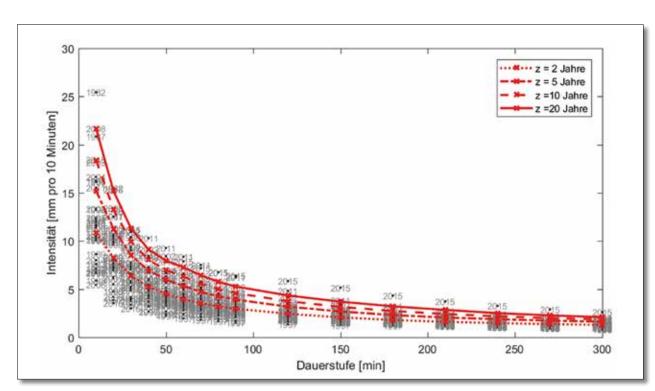


Abbildung 5: Neue IDF-Kurven mit Jahresmaxima für St. Gallen

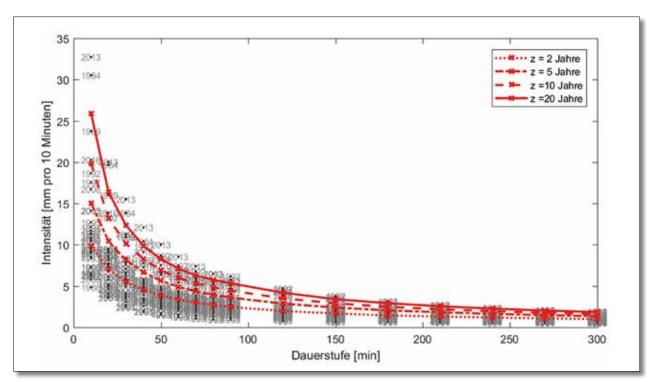


Abbildung 6: Neue IDF-Kurven mit Jahresmaxima für Schaffhausen

Die Unsicherheit in der Bestimmung der IDF-Kurven in den Abbildungen 3 bis 6 anhand der geschätzten GEV-bzw. Gumbel-Verteilungen kann in Form von 95 %-Konfidenzintervallen (Approximation durch Normalverteilung/Delta-Methode, siehe Coles, 2001) für jede Dauerstufe und jede Jährlichkeit angegeben werden. In Abbildung 7 sind diese 95 %-Konfidenzintervalle für die IDF-Kurven der Jährlichkeiten 2, 5, 10 und 20 für Güttingen dargestellt. Analoge Darstellungen für alle vier Messstellen finden sich im separaten Anhang, Abschnitt 5.

Je nach Dauerstufen sind die 95 %-Konfidenzintervalle jeweils ziemlich breit und überlagern sich auch. Das heisst, ein Ereignis mit beispielsweise einer Intensität von 15 mm in 10 Minuten kann grundsätzlich eine Jährlichkeit von ca. fünf Jahren bis über zwanzig Jahren haben. Diese relativ grosse Unsicherheit bei der Handhabung von IDF-Kurven und deren Jährlichkeiten gilt es stets zu beachten.

3.4 Vergleich zu bestehenden IDF-Kurven

Als Vergleich zu bestehenden IDF-Kurven im Kanton Thurgau sind in Abbildung 7 und im separaten Anhang, Seite 19 für die Messstationen Güttingen bzw. Tänikon ebenfalls die IDF-Kurven einer Diplomarbeit aus dem Jahr 2001 dargestellt. Die IDF-Kurven wurden damals ebenfalls mit historischen Regendaten mittels der Peak-over-Threshold-(POT)-Methode bestimmt. Dazu wurden die n = 50 grössten unabhängigen Regenintensitäten pro Dauerstufe an eine Exponentialverteilung angepasst und anschliessend zwei Regressionsbeziehungen für die Dauerstufen von 10 bis 90 Minuten sowie von 120 bis 1440 Minuten mittels Quantil-Regression mit Simple-Scaling-Modell verwendet.

Es zeigt sich, dass sich die IDF-Kurven der Diplomarbeit zu grossen Teilen innerhalb der Konfidenzintervalle der neu geschätzten IDF-Kurven befinden. Hingegen ergibt sich durch die Zweiteilung der Dauerstufen bei 90 Minuten ein Sprung, der für gewisse Analysen von Nachteil sein kann. Weiter ergeben sich durch den Regressionsansatz zusätzliche Unsicherheiten für jede Dauerstufe, die insbesondere für die Dauerstufen am Rande des Regressionsbereichs (z. B. für 10 bzw. 90 Minuten), umso grösser werden. Da für Dimensionierungsaufgaben oft gerade solche Dauerstufen (D \leq 20 Minuten) relevant sind, kann dies allenfalls zu Problemen (Über-/Unterdimensionierung) führen.

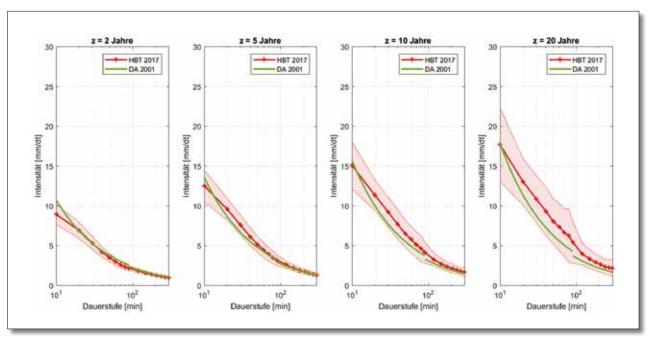


Abbildung 7: IDF-Kurven mit 95%-Konfidenzintervall für Güttingen (inkl. IDF-Kurven der Diplomarbeit 2001)

Aus diesem Grund sind in Zukunft die neuen IDF-Kurven für Dimensionierungsaufgaben in der Siedlungsentwässerung (z. B. als Blockregen in Listenrechnungen) zu verwenden. Für Dauerstufen zwischen den fixen Dauerstufen (D = 10, 20, 30, etc. Minuten) wird empfohlen, die Werte durch lineare Interpolation zu ermitteln.

Listen mit den Werten der IDF-Kurven für alle vier Messstationen sind in den nachfolgenden Tabellen 1 bis 4 zu finden.

Ablese-/Berechnungsbeispiel:

«Intensität für ein 5-Jähriges Ereignis (z = 5) mit D = 22 min in Güttingen»:

- Tabelle 1 «Güttingen»
- Wert für D = 20 min in Spalte $z = 5 \rightarrow 159 \text{ l/s/ha}$
- Wert für D = 30 min in Spalte $z = 5 \rightarrow 126 \text{ l/s/ha}$
- Lineare Interpolation für D = $\frac{22}{7}$ min → $\frac{159}{159}$ + $\frac{159}{159$

Tabelle 1: IDF-Werte für Güttingen

	(Güttinge	n	
D	z=2	z=5	z=10	z=20
[min]	[l/s/ha]	[l/s/ha]	[l/s/ha]	[l/s/ha]
10	149	208	251	295
20	115	159	189	217
30	88	126	153	181
40	70	102	127	155
50	58	86	108	134
60	50	74	96	122
70	43	65	85	111
80	39	58	77	104
90	36	53	69	90
120	30	43	54	66
150	26	36	45	55
180	23	32	39	48
210	21	28	35	44
240	19	26	32	39
270	17	24	29	37
300	16	22	28	36

Tabelle 2: IDF-Werte für Tänikon

		Tänikon		
D	z = 2	z = 5	z = 10	z = 20
[min]	[l/s/ha]	[l/s/ha]	[l/s/ha]	[l/s/ha]
10	196	262	306	348
20	142	197	233	268
30	109	149	176	202
40	87	119	140	160
50	73	98	115	131
60	62	82	96	109
70	55	72	83	94
80	49	64	73	83
90	45	58	66	75
120	36	46	53	59
150	30	38	44	49
180	26	33	38	44
210	23	30	35	40
240	21	27	31	36
270	20	25	29	33
300	18	23	27	31

Tabelle 3: IDF-Werte für St. Gallen

	9	t. Galler	n	
D	z = 2	z = 5	z=10	z = 20
[min]	[l/s/ha]	[l/s/ha]	[l/s/ha]	[l/s/ha]
10	181	253	306	361
20	137	188	221	253
30	106	142	166	188
40	87	115	134	152
50	75	100	116	133
60	67	89	105	121
70	59	79	93	107
80	54	71	83	96
90	50	65	76	88
120	41	53	63	72
150	35	45	53	62
180	30	39	46	54
210	27	34	40	48
240	25	31	36	42
270	23	29	33	38
300	22	27	31	35

Tabelle 4: IDF-Werte für Schaffhausen

	Scl	haffhaus	en	
D	z = 2	z = 5	z=10	z = 20
[min]	[l/s/ha]	[I/s/ha]	[I/s/ha]	[l/s/ha]
10	164	250	331	432
20	117	174	220	273
30	92	135	169	206
40	76	112	138	165
50	64	94	115	137
60	56	82	100	119
70	50	73	89	105
80	45	66	81	96
90	41	60	74	89
120	33	48	59	70
150	28	40	48	57
180	24	34	41	49
210	22	30	37	43
240	20	27	32	38
270	18	25	29	34
300	17	23	27	31

4 Integrale (bivariate) Regenanalyse

4.1 Einleitung

Die IDF-Kurven können dazu benutzt werden, die Jährlichkeit von Einzelregenereignissen für verschiedene Dauerstufen zu bestimmen. Dies ist beispielhaft für das Einzelregenereignis vom 21. Juni 2007 in Güttingen in Abbildung 8 dargestellt.

Es zeigt sich jedoch, dass die Bestimmung einer Jährlichkeit für ein ganzes Regenereignis anhand der IDF-Kurven meist nicht eindeutig ist. Beispielsweise variiert die Jährlichkeit für das Einzelregenereignis vom 21. Juni 2007 – je nach Dauerstufe – zwischen z = 9.4 (für D = 10 min) und z = 0.7 (für D = 300 min).

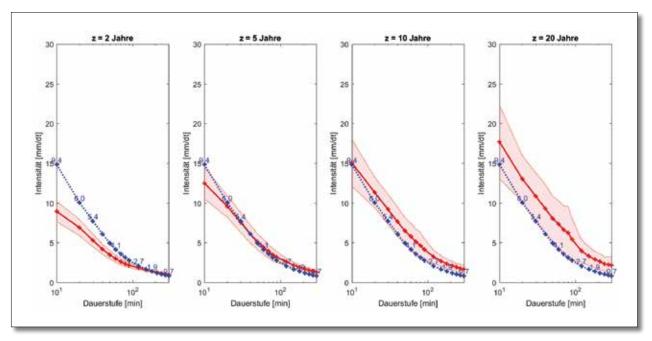


Abbildung 8: Jährlichkeit aus IDF-Kurven für verschiedene Dauerstufen des Einzelregenereignisses vom 21. Juni 2007 aus Güttingen (siehe separater Anhang, Abschnitt 7, Seite 26, Abbildung 57).

Ausserdem wird das totale Volumen eines Regenereignisses in den IDF-Kurven nicht explizit berücksichtigt, obwohl dies für verschiedene Dimensionierungsaufgaben in der Siedlungsentwässerung (und im Wasserbau) wichtig ist (z. B. Dimensionierung von Retentionsanlagen/Regenbecken). Das totale Volumen eines Regenereignisses ist ausserdem vor allem in grossen, komplexen Einzugsgebieten und in Haltungen nahe der ARA von Bedeutung, während in kleinen, wenig komplexen Einzugsgebieten und in Anfangshaltungen eher die (kurzzeitige) maximale Intensität eines Regenereignisses eine Rolle spielt. In den meisten Einzugsgebieten sind jedoch beide Grössen – «maximale Intensität» und «totales Volumen» – für die Fragestellungen der Siedlungsentwässerung wichtig und sollten deshalb jeweils in Kombination bzw. integral betrachtet werden.

Eine Möglichkeit bietet dazu die integrale (bivariate) Analyse von Regenereignissen, in der die Jährlichkeit integral, das heisst über das ganze Ereignis, basierend auf den zwei Grössen «Totales Volumen» und «Maximale Intensität», jedoch ungeachtet der totalen Dauer des Ereignisses, bestimmt wird. Entscheidend ist dabei, die Abhängigkeitsstruktur zwischen diesen beiden Grössen zu verstehen. Dies ist sinnbildlich in Abbildung 9 für die selektierten Einzelregenereignisse in Güttingen illustriert: Beispielsweise besteht zwischen dem totalen Volumen und der maximalen Intensität, über alle Ereignisse betrachtet, eine signifikante positive (lineare) Korrelation (Korrelationskoeffizient = 0.32). Betrachtet man in Abbildung 9 jedoch nur die extremsten Ereignisse, so existiert eher eine negative Korrelation. Das heisst, Ereignisse mit einer sehr grossen maximalen Intensität haben eher ein geringes totales Volumen (z. B. Gewitter) und umgekehrt (z. B. Landregen). Um diese komplexe (nicht-lineare) Abhängigkeitsstruktur korrekt zu beschreiben und Aussagen über die gemeinsame Häufigkeitsverteilung der beiden Variablen (joint probabilty) zu machen, werden in der Statistik sogenannte Copula-Funktionen verwendet.

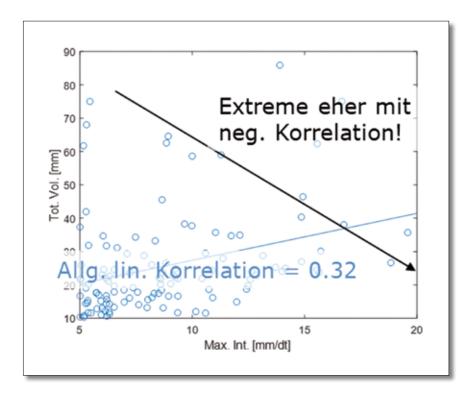


Abbildung 9: Korrelation zwischen der «Maximalen Intensität» und dem «Totalen Volumen» aller selektierten Einzelregenereignisse in Güttingen.

4.2 Theorie

4.2.1 Copulas

Copulas sind mehrdimensionale statistische Funktionen, die den Zusammenhang zwischen den Randverteilungen (marginals) verschiedener Variablen (z. B. «Maximale Intensität» und «Totales Volumen») sowie deren gemeinsame Wahrscheinlichkeitsverteilung (joint probability) beschreiben. Mit Copulas können insbesondere nicht-lineare Abhängigkeiten zwischen mehreren Variablen deutlich flexibler modelliert werden als beispielsweise mit (linearen) Korrelationskoeffizienten. Diese grosse Flexibilität kommt daher, dass Copulas unabhängig von den jeweiligen Randverteilungen (marginals) der Variablen sind.

In der Literatur existieren dutzende solcher Copula-Funktionen, die in ihrer Komplexität mehr oder weniger anspruchsvoll sind. In diesem Projekt wird die «Clayton»-Copula verwendet (siehe auch Consuegra, 2009). Ein visueller Anpassungsgütetest (goodness-of-fit) mittels Lamdba-Plots (siehe separater Anhang, Abschnitt 6) zeigt, dass die «Clayton»-Copula zur Beschreibung der Daten in diesem Projekt geeignet ist.

Für weitergehende Informationen zu Copulas wird auf die Fachliteratur, beispielsweise Nelsen (2007) und Salvadori et al. (2007), verwiesen.

4.2.2 Bivariate Jährlichkeit

Im Unterschied zum univariaten Fall (siehe Abschnitt 3.3) ist für den multivariaten Fall die Definition einer Jährlichkeit für ein Variablenpaar X,Y (z. B. «Maximale Intensität» und «Totales Volumen») nicht mehr eindeutig und in der Literatur gibt es verschiedene Definitionen von multivariaten Jährlichkeiten (siehe dazu Gräler et al. (2016) und Brunner et al. (2016)).

In dieser Arbeit wird auf Grund ihrer ähnlichen Interpretation wie im univariaten Fall explizit die sogenannten «Survival Kendall»-Jährlichkeit (siehe Brunner et al. (2016)) verwendet, die grob gesagt, sämtliche Ereignisse in einen über- und einen unterkritischen Bereich unterteilt, wobei alle Ereignisse mit der gesuchten Jährlichkeit auf einer (kritischen) Isolinie liegen (siehe Abbildung 10).

4.3 Plausibilisierung

In Abbildung 10 sind für Güttigen die maximalen Intensitäten und das totale Volumen der 105 in Abschnitt 2.3 selektierten Einzelregenereignisse sowie deren bivariate Jährlichkeiten dargestellt. Ebenfalls sind aus den IDF-Kurven resultierende maximale Regenintensitäten für D = 10 min (siehe Abschnitt 3.3) dargestellt. Ähnliche Diagramme für die anderen Messstationen befinden sich im folgenden Abschnitt 5.2.

Angesicht der Länge der vorhandenen Regenzeitreihen von 36 Jahren ergeben sich rein theoretisch beispielsweise ca. sieben bis acht Ereignisse, die eine Jährlichkeit von $z \ge 5$ (\Rightarrow 36/5 = 7.2) und ca. drei bis vier Ereignisse, die eine Jährlichkeit von $z \ge 10$ (\Rightarrow 36/10 = 3.6) aufweisen sollten. Diese Anzahl Ereignisse wird in Abbildung 10 mit den eingezeichneten Isolinien relative gut erreicht (sechs Ereignisse für $z \ge 5$ und zwei Ereignisse für $z \ge 10$). Das heisst, die mit der Copula bestimmten bivariaten Jährlichkeiten stimmen (relativ) gut mit der Theorie überein. Dieselbe Aussage kann auch für andern Messstationen gemacht werden.

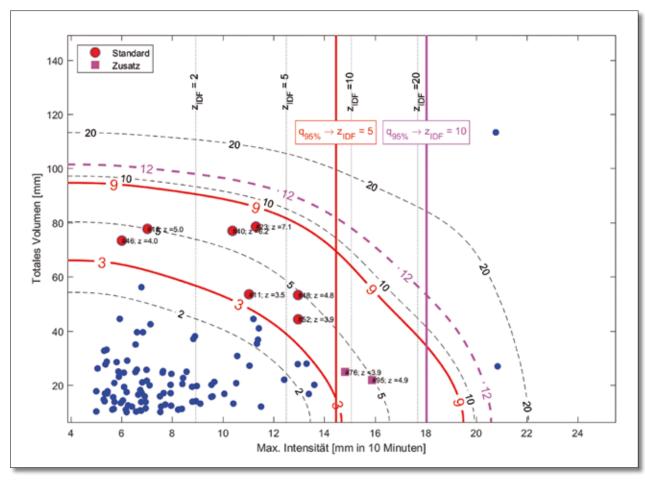


Abbildung 10: Streudiagramm der Variablen «Maximale Intensität» und «Totales Volumen» für die selektierten Einzelregenereignisse der Messstation Güttingen (n = 105) und Isolinien mit den bivariaten Jährlichkeiten bestimmt mittels der angepassten Clayton-Copula und deren «survival Kendall»-Funktion. Ebenfalls sind die aus den IDF-Kurven bestimmten maximalen Regenintensitäten für D = 10 min dargestellt (rote gestrichelte Linian)

4.4 Kriterien für die Auswahl des Regendatenkatalogs

Gemäss «Wegleitung GEP» des Kantons TG ist die massgebende Jährlichkeit zur Überprüfung und Neubemessung der Kanalisation grundsätzlich z=5 Jahre. Für besonders schützenswerte Bereiche (z. B. Stadtzentren, Unterführungen) kann diese Jährlichkeit – in Absprache mit dem Amt für Umwelt (AfU) – auf z=10 Jahre erhöht werden. Aus diesem Grund wurde jeweils ein Standard-Regendatenkatalog (für z=5) und ein Zusatz (für z=10) erstellt.

Da sowohl Ereignisse in den Regendatenkatalog Eingang finden sollten, welche leicht unterhalb als auch leicht oberhalb der geforderten Jährlichkeiten liegen, wurden Intervallgrenzen als Ein-/Ausschlusskriterien gesetzt. Die Intervallgrenzen wurden dabei so gesetzt, dass in etwa sieben bis acht Einzelregenereignisse (siehe Abschnitt 4.3) für den Standardsatz und ca. zwei bis drei Ereignisse für den Zusatzsatz eingeschlossen werden.

Da die maximalen Intensitäten der IDF-Kurven die korrespondierenden Isolinien der bivariaten Analyse jeweils ungefähr in der Mitte (grösste Krümmung) schneiden (siehe Abbildung 10), würden rein basierend auf den gesetzten Intervallgrenzen auch Einzelereignisse eingeschlossen, die eine grössere maximale Intensität (bei gleichzeitig geringem Volumen) haben, als von den IDF-Kurven gefordert. Dies würde zu Problemen z. B. bei Anfangshaltungen führen, die gemäss Abschnitt 3.4 weiterhin mit Blockregen aus IDF-Kurven und Listenrechnungen dimensioniert werden können. Aus diesen Gründen wurde als weiteres Kriterium bei der Auswahl des Regendatenkatalogs festgelegt, dass nur Ereignisse eingeschlossen werden, deren maximale Intensität kleiner oder gleich dem 95 %-Quantil (obere Grenze des Konfidenzintervalls) der entsprechenden IDF-Jährlichkeit entsprechen. Durch die Verwendungen des 95 %-Quantils (statt des Mittelwerts) wird der Unsicherheit in der Bestimmung der IDF-Jährlichkeit Rechnung getragen (siehe Abschnitt 3.3) und es werden auch Ereignisse mit maximalen Intensitäten berücksichtigt, die bis an den oberen Rand einer entsprechenden Jährlichkeit (z. B. z = 5) reichen (worst-case-Szenarium). Eine Zusammenstellung der verwendeten Kriterien (Intervallgrenzen für Isolinien und 95 %-Quantil der IDF-Kurven) zur Bestimmung des Regendatenkatalogs (Standard- und Zusatzsatz) ist in Tabelle 5 zu finden.

Tabelle 5: Kriterien zur Bestimmung des Regendatenkatalogs (Standardsatz und Zusatzsatz)

Regenkatalog	z_Bi	z IDF q95
Standardsatz (z = 5)	[3 9]	95%-Quantile IDF (z = 5)
Zusatzsatz (z = 10)	[9 12]	95%-Quantile IDF (z = 10)

5 Regendatenkatalog

5.1 Ausgewählte Einzelregenereignisse

Die Abbildungen 11 bis 14 zeigen die anhand der Kriterien im vorangehenden Abschnitt ausgewählten Ereignisse für den Standard- und den Zusatz-Regendatenkatalog der vier Messstationen.

Eine tabellarische Zusammenfassung dieser Ereignisse ist in den Tabellen 6 bis 9 zu finden.

Eine detaillierte Zusammenstellung der ausgewiesenen Einzelregenereignisse ist dem separaten Anhang, Abschnitt 7, zu entnehmen.

ID	Ereignis#	Satz	Datum (Start)	Max. Int. [mm]	z_IDF	Volumen [mm]	z_Bi
1	11	Standard	26.07.1984 09:50	11.0	3.4	53.5	3.5
2	15	Standard	09.04.1986 16:00	7.0	0.8	77.7	5.0
3	23	Standard	05.07.1993 19:00	11.3	3.6	78.5	7.1
4	40	Standard	02.08.1996 17:40	10.4	2.9	77.0	6.2
5	46	Standard	11.05.1999 20:50	6.0	0.5	73.3	4.0
6	48	Standard	14.06.1999 16:40	13.0	5.7	53.2	4.8
7	52	Standard	13.06.2000 18:30	13.0	5.7	44.3	3.9
8	76	Zusatz	21.06.2007 08:20	14.8	9.4	24.9	3.9
9	95	Zusatz	27.09.2013 18:10	15.9	12.5	21.9	4.9

Tabelle 6: Regendatenkatalog Güttingen

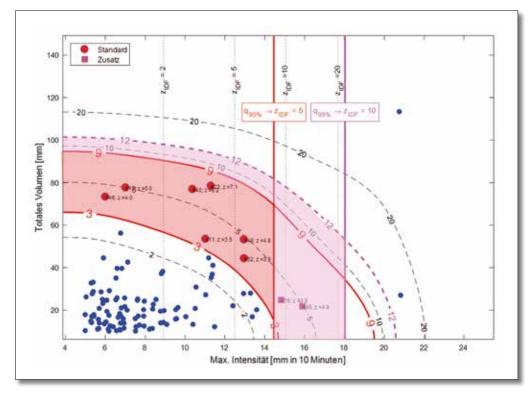


Abbildung 11: Regendatenkatalog für Güttingen (rote Punkte = Standard-Katalog; magenta Quadrate = Zusatz).

Tabelle 7: Regendatenkatalog Tänikon

ID	Ereignis#	Satz	Datum (Start)	Dauer [h]	Max. Int. [mm]	z_IDF	Volumen [mm]	z_Bi
1	4	Standard	01. September 1981 02:30	21.2	11.3	1.8	58.9	3.0
2	14	Standard	10. August 1984 08:00	26.5	5.5	0.2	74.9	5.9
3	30	Standard	22. September 1990 20:00	33.8	8.9	0.7	64.5	3.4
4	44	Standard	06. August 1994 17:10	1.5	16.8	6.6	37.9	4.1
5	45	Standard	10. August 1994 14:10	9.5	14.9	4.1	46.3	3.2
6	89	Standard	21. August 2005 07:50	18.3	8.9	0.6	62.5	3.1
7	93	Standard	08. August 2007 14:50	15.3	5.3	0.2	67.9	3.8
8	99	Standard	26. Mai 2009 13:40	11.8	15.6	4.8	62.2	5.0
9	49	Zusatz	21. Juni 1995 09:10	2.5	19.6	14.1	35.6	9.8
10	92	Zusatz	21. Juni 2007 08:00	0.7	18.9	11.5	26.5	6.9
11	118	Zusatz	14. Juni 2015 15:30	20.3	16.7	6.4	74.9	9.3

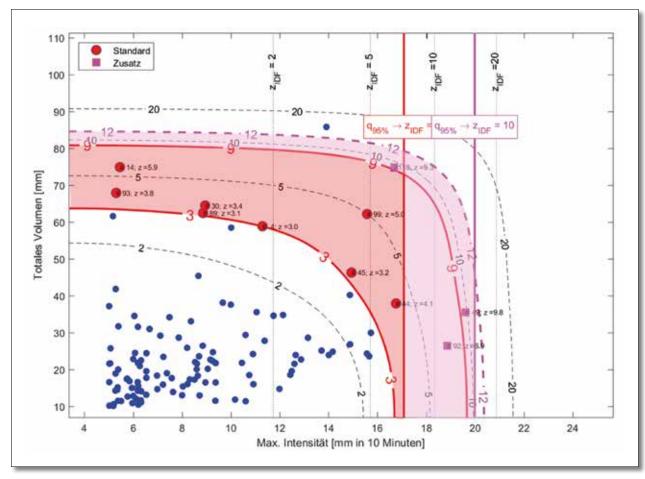
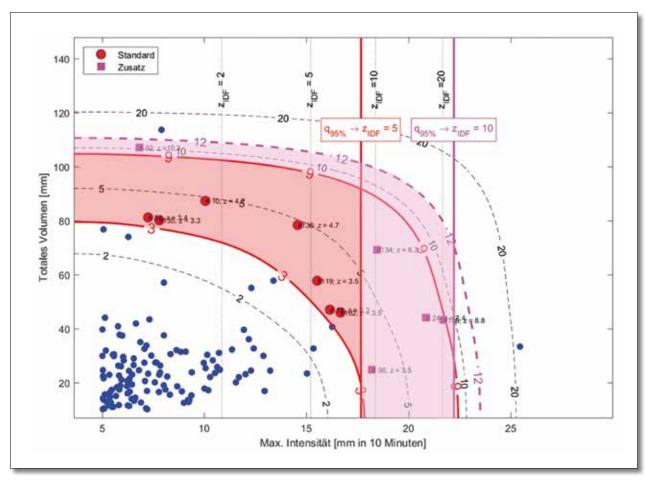



Abbildung 12: Regendatenkatalog für Tänikon (rote Punkte = Standard-Katalog; magenta Quadrate = Zusatz).

Tabelle 8: Regendatenkatalog St. Gallen

ID	Ereignis#	Satz	Datum (Start)	Dauer [h]	Max. Int. [mm]	z_IDF	Volumen [mm]	z_Bi
1	10	Standard	10. August 1984 14:00	26.8	10.1	1.7	87.3	4.7
2	18	Standard	27. Mai 1986 14:30	8.2	16.1	6.1	47.0	3.3
3	84	Standard	06. Juni 2002 19:50	15.3	7.3	0.5	81.2	3.4
4	102	Standard	12. August 2004 15:30	4.5	16.7	6.9	45.9	3.5
5	119	Standard	10. Juli 2011 13:30	1.8	15.5	5.4	57.7	3.5
6	135	Standard	14. Juni 2015 14:30	23.5	7.8	0.6	80.1	3.3
7	136	Standard	10. August 2015 21:50	3.7	14.6	4.4	78.4	4.7
8	24	Zusatz	18. August 1987 00:40	3.7	20.8	16.9	44.0	7.4
9	92	Zusatz	31. August 2002 17:50	26.8	6.8	0.4	107.1	10.2
10	96	Zusatz	16. Juli 2003 14:30	3.7	18.2	9.6	24.8	3.5
11	109	Zusatz	19. August 2008 17:00	5.5	21.7	20.2	43.1	8.8
12	134	Zusatz	27. April 2015 20:40	15.7	18.4	10.1	69.2	6.3

 $Abbildung \ 13: Regendatenkatalog \ f\"{u}r \ St. \ Gallen \ (rote \ Punkte = Standard-Katalog; magenta \ Quadrate = Zusatz).$

Tabelle 9: Regendatenkatalog Schaffhausen

ID	Ereignis#	Satz	Datum (Start)	Dauer [h]	Max. Int. [mm]	z_IDF	Volumen [mm]	z_B
1	2	Standard	24. Juli 1982 01:30	22.5	6.2	0.4	70.0	6.0
2	6	Standard	26. Juli 1984 16:10	2.3	15.2	5.2	39.6	3.6
3	30	Standard	21. Juni 1996 16:50	16.7	11.4	2.7	53.3	3.4
4	36	Standard	13. Juli 1997 19:50	0.5	17.5	7.3	19.0	4.4
5	55	Standard	04. Juni 2007 16:10	3.7	8.8	1.6	56.0	3.2
6	60	Standard	29. Juni 2008 19:00	0.5	16.8	6.5	19.7	3.9
7	62	Standard	14. Juli 2009 20:40	13.0	8.1	0.8	75.1	7.7
8	84	Standard	19. November 2015 21:00	27.2	5.9	0.4	68.9	5.7
9	18	Zusatz	24. Juni 1992 14:10	2.2	18.7	8.6	57.2	7.0
10	88	Zusatz	24. Juni 2016 20:20	1.8	20.3	10.6	46.1	7.4

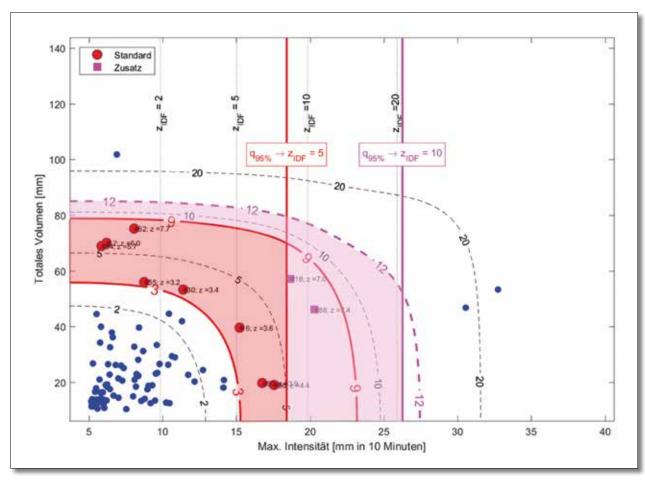


Abbildung 14: Regendatenkatalog für Schaffhausen (rote Punkte = Standard-Katalog; magenta Quadrate = Zusatz).

5.2 Regionalisierung

Die Zuteilung der einzelnen Regendatenkataloge (Messstellen) zu den jeweiligen ARA-Einzugsgebieten erfolgt gemäss der Aufteilung in Abbildung 15. Diese Aufteilung wurde durch einen Meteorologen basierend auf den Grenzen der jeweiligen ARA-Einzugsgebiete gezogen, da diese für die verbandsweisen Berechnungen in den GEP-Überarbeitungen relevant sind. Grenzen von natürlichen, hydrologischen Einzugsgebieten wurden so gut als möglich berücksichtigt.

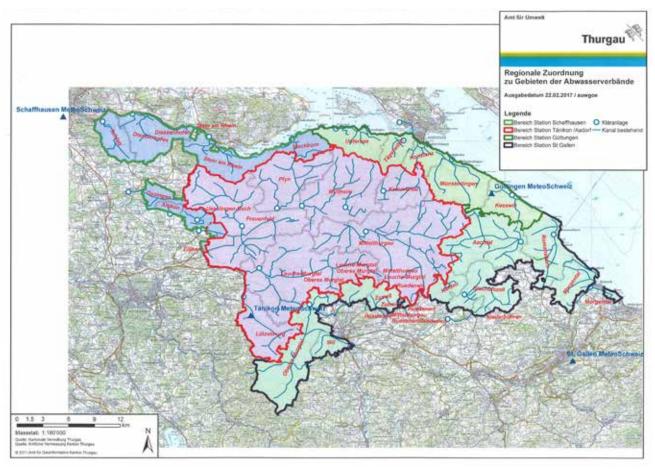
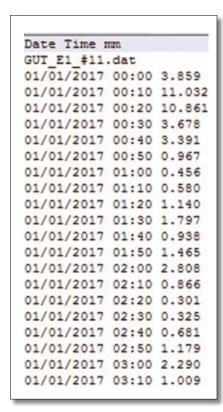



Abbildung 15: Zuteilung der einzelnen Regenmessstationen (Regendatenkataloge) zu den jeweiligen ARA-Einzugsgebieten im Kanton Thurgau.

6 Anwendung Regendatenkatalog in GEP-Überarbeitung

6.1 ASCII-Files

Die im vorangehenden Abschnitt bestimmten Einzelregenereignisse der Regendatenkataloge der einzelnen Messstationen stehen als separate ASCII-Files (.dat) pro Ereignis zur Verfügung und können auf der Website (umwelt.tg.ch) des Amts für Umwelt heruntergeladen werden. Ein Beispiel eines solchen ASCII-Files ist in Abbildung 16 für das Einzelregenereignis #11 im Regendatenkatalog Güttingen dargestellt. Bezüglich der Formatierung in den ASCII-Files gelten die folgenden Konventionen:

- Die Datumsangabe ist im Format «dd.mm.yyyy HH:MM» abgespeichert, da viele Softwares dieses Datumsformat unterstützen. Eine Umwandlung in ein anders Format ist jedoch einfach (z. B. mit Excel) durchzuführen.
- Die Zeitindexierung startet jeweils für jedes Einzelereignis am «01/01/2017 00:00». Das heisst, der Zeitstempel im Regendatenkatalog entspricht nicht dem realen Zeitstempel des Ereignisses. Diese einheitliche Zeitindexierung erleichtert jedoch die Verwendung der Ereignisse in gängigen Simulationsprogrammen (SWMM, MikeUrban, etc.).
- Die Einheit der Regenintensität ist «mm/10 Minuten». Eine Umwandlung in eine andere Einheit (z. B. «mm/h» → Faktor 6 oder «l/s/ha» → Faktor 16.67) ist jedoch einfach (z. B. mit Excel) durchzuführen.

Abbildung 16: ASCII-File (.dat) des Einzelereignisses #11 im Regendatenkatalog «Güttingen»

6.2 Simulation und Auswertung

Zur konkreten Anwendung eines Regendatenkatalogs für ein ARA-Einzugsgebiet mit einem Simulationsprogramm (z. B. SWMM) und der anschliessenden Auswertung ist im Folgenden das Vorgehen aufgeführt:

- Es muss jeweils der gemäss Abschnitt 5.2 zugeteilte Regendatenkatalog verwendet werden.
- Sämtliche Einzelregenereignisse (Standard und Zusatz) werden sequentiell im Modell simuliert und ausgewertet.
- Die Simulationsergebnisse werden bezüglich Überlastungsereignissen analysiert (Schachtüberflutung, Überschreitung eines Stauniveaus etc.).

6.3 Ergebnis-Matrix

Die Ergebnisse (Überlastungsereignisse) der Auswertung jedes simulierten Einzelereignisses können in einer Ergebnis-Matrix (siehe Abbildung 17) übersichtlich dargestellt werden und daraus mögliche Massnahmen (z. B. Vergrösserung von Rohrkalibern, Anpassungen von Weiterleitmengen etc.) abgeleitet werden. Entscheidend ist dabei, die Anzahl der Überlastungen pro Schacht mit der Anzahl Überlastungen pro Ereignis und dessen (bivariaten) Jährlichkeit in Relation zu setzen. So müssen beispielsweise bei häufigen Überflutungen von Schächten bei Ereignissen mit geringer Jährlichkeit (z < 5) – gemäss «Wegleitung GEP» – zwingend Massnahmen getroffen werden. Hingegen können Massnahmen bei Schächten mit Überflutungen lediglich bei Ereignissen mit einer Jährlichkeit am oberen Ende der Intervallgrenzen (siehe Abschnitt 7.1) fallweise (d. h. in Abhängigkeit des schützenswerten Bereiches) und in Absprache mit dem AfU eingeleitet werden. Weitergehende Schritte (Erfolgskontrolle, Variantenstudium etc.) können ebenfalls basierend auf der Ergebnis-Matrix eingeleitet werden.

Event	Max. Int.	Tot. Vol.	Z	S1	S2	S2	 Sn	Σ
11	11.0	53.5	3.5	1	0	0	 0	1
15	7.0	77.7	5.0	0	1			1
23	11.3	78.5	7.1	1	1	0	 1	3
40	10.4	77.0	6.2	0	1		 1	2
46	6.0	73.3	4.0	0	0	0	 0	0
48	13.0	53.2	1.0	0	1	0	 0	1
52	13.0	44.3	3.9	0	0	0	 0	0
Σ				2	4	0	 2	

Abbildung 17: (Fiktive) Ergebnis-Matrix von Überflutungsereignissen (0 = keine Überflutung, 1 = Überflutung) in den Schächten S_1 , S_2 , ..., S_n eines mit dem Regendatenkatalog «Güttingen» (Standardsatz) simulierten Einzugsgebiets. Die Einzelregenereignisse (siehe separater Änhang, Seite 45) mit ihren Charakteristiken (maximale Intensität, totales Volumen und bivariate Jährlichkeit) sind in den Zeilen der Matrix ersichtlich. In der letzten Spalte bzw. Zeile sind die Überflutungsereignisse jeweils pro Schacht bzw. pro Event summiert. Bivariate Jährlichkeiten grösser als z = 5 (Standardsatz) sind rot markiert.

6.4 Langzeitsimulation (optional)

Nachdem der Erfolg sämtlicher Massnahmen im Rahmen eines Variantenstudium mit dem Regendatenkatalog nachgewiesen werden konnte, sollte idealerweise in einem letzten Schritt eine Langzeitsimulation mit einer Regenzeitreihe von wenigstens zehn Jahren durchgeführt und die getroffenen Massnahmen erneut auf ihre Effizienz überprüft werden. So können Überlastungsereignisse, die mit dem Regendatenkatalog nicht erkannt worden sind, identifiziert und ihre (empirische) Häufigkeit (z. B. zwei Mal während der 10-jährigen Langzeitsimulation, das heisst «Jährlichkeit des Versagens der Abwasseranlage» = 10/2 = 5 Jahre) bestimmt werden. Diese «Jährlichkeit des Versagens der Abwasseranlage» kann dann in Relation zur Schutzwürdigkeit des Bereiches gesetzt und daraus können gegebenenfalls weitergehende Massnahmen definiert werden.

7 Fazit

- Die Neuberechnung von IDF-Kurven gemäss der Extremwertstatistik der MeteoSchweiz liefert leicht unterschiedliche Jährlichkeiten gegenüber bestehenden IDF-Kurven im Kanton Thurgau (z. B. Diplomarbeit 2001). Für Dimensionierungsaufgaben (z. B. einfache Listenrechnungen mit Blockregen etc.) sind in Zukunft die neu berechneten IDF-Kurven zu verwenden.
- Für alle ARA-Einzugsgebiete stehen repräsentative Regendatenkataloge (Standardsatz und Zusatz für besonders schützenswerte Bereiche) mit einer «handlichen» Anzahl «realer» Einzelregenereignisse beim Amt für Umwelt des Kantons Thurgau zur Verfügung.
- Die Regendatenkataloge dienen als einheitliche Grundlage für Simulationen und Dimensionierungsaufgaben im Rahmen der GEP-Überarbeitung.
- Die Einzelregenereignisse in den Regendatenkatalogen wurden basierend auf der gemeinsamen Jährlichkeit ihres totalen Volumens und ihrer maximalen Intensität ausgewählt.
- Die Regenkataloge stehen als ASCII-Files für gängige Simulationsprogramme (SWMM, MikeUrban, etc.) zur Verfügung und können von den GEP überarbeitenden Ingenieurbüros auf der Homepage des Amts für Umwelt unter folgendem Link https://umwelt.tg.ch/route/cms-index-realtpreview/id/7182/lang/de kostenfrei heruntergeladen werden.

Zusammen mit einer Langzeitsimulation können so die «Jährlichkeit für das Versagen von Abwasseranlagen» sowie Massnahmen anhand der Schutzwürdigkeit des Bereiches bestimmt werden.

Herausgeber: Kanton Thurgau, Amt für Umwelt, Bahnhofstrasse 55, 8510 Frauenfeld

Ausgabe: August 2017

Autor: Hunziker Betatech AG, Pflanzschulstrasse 17, 8411 Winterthur

Gestaltung: werbeschmid.ch, Egon Schmid, Dietingen, 8524 Uesslingen

Download: www.umwelt.tg.ch